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INTRODUCTION 

The interaction problem for explosive fuse charges is studied within a formulation proposed by 
M. A. Lavrent'ev. The case of two concentrated changes and that of a uniform number of evenly distributed 
surface charges are considered. It is shown that the area of the ejection cone decreases in the interaction. 
Highly distributed explosive charges, called fuse charges, were first successfully applied for different types 
of excavation and earth-moving operations in the Ukraine in the 1940Vs and 1950is under the direction of 
M. A. LavrentVev. Most of these operations, such as the digging of wells and the laying of drainage chan- 
nels, were carried out at that time by N. M. Sytyi. A large number of concentrated charges were used 
(either connected by a detonation fuse or having a capsule inserted into each charge, after which it was ex- 
ploded) in order to construct a trench in the soil with high length-width ratio or, for example, to create a 
shock wave that  would have a cyl indr ica l  f ront  at s ignif icant  d is tances  and for a long duration. M . A .  Lav -  
r e n t ' e v  and N. Me Sytyi p roposed  that  a na r row  ditch be cut in the soil  (if we a r e  speaking  e r a  t rench) in 
which the explosive charge  is laid without exploding and that the explosion be c a r r i e d  out using a single 
detonator .  Fuse  cha rges  have now become  ex t r ao rd ina r i l y  widespread .  An approx imat ion  method of ca l -  
culat ing the dynamic s t r e s s  and veloci ty  f ields,  based  on a model  of an ideal i ncompres s ib l e  fluid, is often 
used to theore t ica l ly  e s t ima te  the effect  of an underground charge .  L a v r e n t ' e v  [1] solved the production 
and effect  p rob lem for a b las t  f rom a hollow charge  within the f r a m e w o r k  of this model .  Steady fluid flow 
was cons idered  here .  A model  of an ideal i ncompress ib l e  fluid has  been used [2] to calcula te  the cone  di- 
mensions  for  an underground eject ion explosion,  a pulsed formula t ion  of the p rob lem was applied, and 
the c o m p l e m e n t a r y  bea r ing  power of the spoil  (or c r i t i ca l  velocity) was introduced. The ideas of Lavren t t ev  
were  subsequently developed in works  on the shape of the e ject ion cone [3-5], on the pr inc ip les  of an absolute 
d i rec ted  explosion [6-7], on the d isrupt ive  effect  of an explosion [8, 9], and on a pr inciple  of a uniform 
grinding for  rock  [10]. 

A pulsed formula t ion  of the hydrodynamica l  p rob l ems  is usual ly  used in solving explosion p rob lems  
[11]. Suppose we have a reg ion  D with boundary r fi l led w i t h a n  ideal i ncompress ib l e  fluid. A p r e s s u r e  
p (Q, t), where  QEF act ing for a b r i e f  per iod  of t ime  T is defined a t  points of the boundary.  It  is r e -  
quired that the field of p r e s s u r e s  p (M, t) and ve loc i t i es '~ (M,  t), where  M E  D , be de te rmined  in D. To 
solve this p rob lem,  we introduce the p r e s s u r e  pulse 

T 

P (M) = j" p (M, t) dt ,  (0ol) 
0 

with the condition [11] that  p r e s s u r e  p (Q, t) is s h o r t - t e r m , - ~  = - ( l / p )  g r a d P  (M). 

The incompress ib i l i t y  condition divT~ ~ = 0 impl ies  that  the p r e s s u r e  pulse P (M) sa t i s f i es  the Laplace  
equation AP = 0. Thus it is n e c e s s a r y  to solve the Dir ichle t  p rob lem for a Laplace  equation under the 
boundary condition (0.1). The p r e s s u r e  and veloci ty  ca lcula ted  using this method a re  independent of t ime ,  
which co r r e sponds  to the concept  that  the p r o c e s s  in which the p r e s s u r e  and veloci ty  f ields a re  es tab l i shed  
at the initial stage of motion a r i s ing  in the explosion is s h o r t - t e r m .  
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F r o m  the physical  point of view, the c rea t ion  of an initial veloci ty  field is the r e su l t  of propagat ion,  
ref lec t ion ,  and in teract ion between the s t r e s s  waves  in the medium surrounding the explosive .  The re fo re ,  
the scheme  of an ideal i ncompress ib l e  fluid is re f ined  in the mos t  des i r ab le  way by es tab l i sh ing  its r e l a t ion  
to exact  solutions of wave-propaga t ion  p rob l ems  in a c o m p r e s s i b l e  medium.  

It  has  been shown [12, 13] in an acoust ic  approximat ion  that  the model of an ideal incompress ib le  
fluid "can  be in te rp re ted  as  the in tegra l  a sympto t ic  (as t --* ,r of the c o m p r e s s i b l e - m e d i u m  p r o b l e m . "  
T h e r e  exis t  two v a r i e t i e s  of this model .  In one model (the fluid model) [2] the soil  is cons idered  as  an ideal 
incompress ib le  fluid throughout the en t i re  region it occupies.  In the second model  ( so l i d - f l u id  model) ,  the 
soil  is desc r ibed  by equations for  an ideal incompress ib le  fluid only in some  reg ion  nea r  the charge .  Out-  
side the region,  the soil  behaves  as  an absolutely r ig id  body, while the boundary sepa ra t ing  the fluid is a 
solid wall,  found by set t ing the veloci ty  modulus on it equal to the c r i t i ca l  magnitude c , .  

Two p rob lems  in the s o l i d - f l u i d  model  for the in terac t ion  of explosive  cha rges  were  cons idered  as 
an example .  They a re  of definite in te res t  f rom the p rac t i ca l  point of view, since the explosion of s y s t e m s  
of cha rge s  is encountered quite often. At the s a m e  t ime,  it is unclear  what it i s  tha t  an in te rac t ion  of  ch a rg e s  
leads  to, that  is ,  how the dimensions  of the eject ion reg ion  va ry .  

1.  I n t e r a c t i o n  P r o b l e m  f o r  a n  I n f i n i t e  S y s t e m  o f  P l a n e  

S u r f a c e  C h a r g e s  

Suppose the reg ion  D is in the f o r m  of a lower hal f -p lane ,  and le t  an infinite s e r i e s  of plane cha rg es  
of length 2Z be  s i tuated on the sur face  y = 0, 2m units apar t .  The ef fec t  o f  each  cha rge  is  de te rmined  by 
the pulse p r e s s u r e  P,  s ince a potential  r = - r  = - P / P  is defined on each segment .  

Because  of s y m m e t r y ,  we will l imi t  ou r se lves  to cons ider ing  the reg ion  fo rmed  by two ve r t i ca l  l ines  
pass ing  through the midpoint  of  one charge  and the midpoint of the dis tance between them.  Let  us  introduce 
the d imens ion less  va r i ab les  ~ = w/~o 0 and z = zc*/cP0 ( supe r sc r ip t s  will  be hencefor th  omitted).  The flow 
reg ion  in the physica l  plane is  depicted in Fig.  l a .  On the segment  CD ~ = 0 (free boundary) .  The unknown 
boundary AB is a segment  of the s t r eaml ine  EABC on which the s t r e a m  function # = 0. Moreover ,  the 
modulus of ve loc i ty  is constant  and equal to one on the boundary AB. I t  is n e c e s s a r y  to find f r o m  these  data 
an analytic function w (z) = r + i# that  is the complex flow potential  anda l so  de te rmines  the l ines AB. The 
flow region is in the f o r m  of a half -band (Fig. lb) in the plane of the complex potential.  

Le t  us introduce the function ~ = lndz /dw.  T i e  flow reg ion  in the plane ~ is  a lso  in the f o r m  of a 
half -band (Fig. lc) .  The p rob lem will r educe  to the conformal  mapping of the ha l f -bands  r e p r e s e n t e d  in 
Fig. lb  and c with the indicated cor respondence  of points,  obtained by means  of an in te rmedia te  mapping on 
the ha l f -p lane ,  and has  the f o r m  

e - - e - - 2 ~ s h ~  
cos ~w = (1.1) 

where  c and e a r e  the p a r a m e t e r s  of the p rob lem,  

(v is the veloci ty  at the point C and u, the veloci ty  at  the point E). We obtain f r o m  Eq. (1.1) the o rd inary  dif- 
ferent ia l  equation 

a b c 

e ~ c 

A k " ,'~,: S ,~ - I : 

Fig. i 

~ C O S ~ W - - e - - c  
e + c a w  

+ 1 / ( b  - -  cos zw) (a +. cos nu'), 

b-~ 2 + e - - c  2- -e~-c  
~_L ~ , a = e +-------7-' 

whose integrat ion yields  the des i red  solution. The 
integral  along the segments  ED and DC indicates a 
re la t ion  between the p a r a m e t e r s  c and d and the ini- 
t ial  data ! and m,  and, along the curve  AB, the shape 

of the cone b o u n d a r y .  Figure  la  depicts  the shape of 
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Fig. 2 

the ejection cone at ! ~ 0 . 1 a n d m ~  0.095. W h e n c =  l ( v =  1, po in t sB  a n d C c o -  
inciding), the charges  do not interact ,  and our solution coincides with a previously 
found solution [3]. 

When e = 1 (u = 1) points E and A coincide, and only par t !depending on the 
size of c) of the charge will affect the ejection. It is of interest  to note that if flow 
is r e v e r s e d  (i.e., if we assume that the segment DC is the charge and that AD is 
the free surface),  our solution again coincides with the previously found solution 
[3]. 

The a rea  S of the ejection cones was calculated for different distances be- 
tween the charges  when l = 0.1 (when m > 0.244, the charges  do not interact) in 

o rder  to es t imate  the efficiency of the operat ion of the sys tem of charges .  This dependence is depicted in 
Fig. 2. The interaction of charges  under our formulat ion dec reases  the cone area .  One feature of the prob-  
lem is that as m - -  0, the ent ire  sys tem of charges  reduces  to a single infinitely distant charge,  and, in gen- 
eral ,  no ejection occurs .  Expressed  otherwise,  it is found that if we take two charges  in place of an infinite 
system,  the ejection cone does not vanish when they have completely approached each other.  

Let  us consider  the interaction of two concentrated surface charges  whose effect in the hydrodynamic 
model is descr ibed by dipoles with moment M. The size of M for a surface charge  is de termined by the 
formula M = tp/, where tp is the potential a r i s ing  on the charge line and 1 is charge length. Since tp is 
proport ional  to the charge thickness,  we find that M is proport ional  to the charge  energy.  It is known f rom 
dimensionali ty theory that the charac te r i s t i c  dimension of a cone f rom such a charge  is proport ional  to 
MvrM~-c., while the area  is proport ional  to the a rea  of the explosives.  Consequently, the a rea  of the cone is 
equal to the total a rea  of the noninteracting charges  as the two surface charges  merge .  

Let us consider  the problem in more  detail in order  to determine the influence of interact ion in in- 
te rmedia te  cases .  

2.  E x p l o s i o n  o f  T w o  S u r f a c e  C h a r g e s  

The general  fo rm of the flow is depicted in Fig. 3a. Because of the s y m m e t r y  of the problem, we will 
l imit ourse lves  to the r ight  half-plane.  A charge situated at point B ix = L, y = 0) will be said to be a dipole 
with moment  M. It is requi red  that the complex flow potential w (z) = ~ + i$ and the unknown part  of the 
boundary DC be found in the region D z f rom the boundary conditions tp = 0 on the free surface AC, r = 0 in 
ADC lAD is the s t reamline,  by symmetry) ,  and Idw/dz[ = c .  on the unknown par t  DC. We introduce the di- 
mensionless  var iables  

m 
/ p  

Then [d~/dz'] = 1 on DC and w ~ i / ( z - L )  in a neighborhood of B. The ba r s  will henceforth be omitted over  
dimensionless  var iables .  

We will use the method of s ingular i t ies  [14, 15] for the solution. We introduce a pa ramet r i c  complex 
variable t and form a flow region D z and a quadrant of the unit c i rc le  ADC of the plane t with the point co r -  
respondence t A = 0, tD = 1, and t C = i (Fig. 3b). Here  the point t B = ih (h is determined in the course  of 
solving the problem) cor responds  to B. The flow region in the plane w is depicted in Fig. 3c. Let us con- 
s t ruct  the function w it). In a neighborhood of B it = ih) - ~ -< r ~o, i.e., there exists  a flow with an in- 
finite flow rate .  The independent var iables  vary  by the same magnitude as this point is c i rcui ted in the t 

and w planes. Consequently, a f i r s t - o rde r  pole c o r r e -  
b 

l C 

I 

Fig. 3 

�9 

\ 

C 

|  
!: 

~ 
IB 

sponds to this point for the function w it). When t = 0 
and t = i ipoints A and C), w(t) has f i r s t - o rde r  zeros  
(the conformal  proper ty  is not violated at these points 
and dw/dt ~ 0). The conformal  proper ty  is violated 
at the points F (t = r) and D it = 1), so that dw/dt = 0. 
Since r = 0 on ADC and tp = 0 on ABC, w may be con- 
tinued, by symmet ry ,  to the ent ire  complex plane with 
poles at  t = ~ih and �9 i /h,  and ze ros  at the points t= 0 
and t = ~- i. It is ra t ional  except for the other singular 
points and has the form 
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t (t~ + i) 
w --- - :  A (t~ ~ - ~ - ~ 7 2 h ~ )  , (2.1) 

whe re  A is  a r e a l  cons tan t .  

We f ind by d i r e c t  compu ta t i on  that  

where  

o r  

a___w = .~__~ it - t~) (t~ - r 2) (t - t2r9 
dt r z (t 2 -4:- h=) ~' (t ~ t%z) = ' 

r ~  i i 
-7-=-T - - h  

(2.2) 

' 
~ ' - - h - -  --h)Z--4 

r = 2 ' (2.3) 

when h < h i = ~ 1, whe re  r i s  a r e a l  n u m b e r ,  0 < r < 1. When h = h i and r = 1, 

- ~ - - h + ~  4 - -  - - h )  ~ 

r - ~  
2 

as  h > h i i n c r e a s e s  fu r the r ,  whe re  r is  a complex  n u m b e r ,  Ir] = 1. The  poin t  F t r a v e l s  a long  the a r c  CD in  
Fig .  3b c o r r e s p o n d i n g l y  when h > hi  and  the point  D t r a v e l s  a long  the lower  coas t  of  the s ec t ion  FA in  F ig .  
3c.  

Le t  u s  now ca l cu l a t e  the func t ion  dw/dz  -= r (t). At the point  t = r 

dw "dw dz O. 
dt dz dt 

I f r  is  a r e a l  n u m b e r ,  dz /d t  ~ 0, s ince  the con fo rma l  p r o p e r t y  i s  not v io la ted  on AD unde r  the ma pp ing  
z -* t ,  and,  consequen t ly ,  dw/dz = 0. But  if  r i s a  complex  n u m b e r ,  [dw/dt  I = I a n d d z / d t =  0. W e w i l l t h e r e f o r e  
c o n s i d e r  each case  s epa ra t e ly .  

1) h < hi ,  r a r e a l  n u m b e r .  In this  c a s e  the e x t e r i o r  of a uni t  s e m i c i r c l e  and the sec t ion  a long  the 
i m a g i n a r y  s e m i a x i s  (Fig.  4a) is  the flow r e g i o n  in the ~0 p lane .  As the point  B in the t p lane  is c i r c u i t e d ,  
the independent  v a r i a b l e  v a r i e s  by v ,  and v a r i e s  by 2~ as  a c i r c u i t  is c a r r i e d  out in the ~ p lane ,  so tha t  
the funct ion  r has  a s e c o n d - o r d e r  pole a t  the po in t  B (t = ih). At the point  F (t = r)  r has  a f i r s t - o r d e r  zero .  
A l ine  s e g m e n t  in the r p lane  c o r r e s p o n d s  to the l ine  s e g m e n t  AFD in the t p lane ,  so that,  by s y m m e t r y ,  r 
can  be cont inued  through AFD and,  ana logous ly ,  through ABC, and we may e s t a b l i s h  that  it  has  a s econd-  
o rde r  pole at  the point  t = - ih and a f i r s t - o r d e r  ze ro  a t  the point  t = -- r .  The  funct ion  w is  now def ined in 
the un i t  c i r c l e  and  when ltl = 1, lwt = 1. By s y m m e t r y ,  it  can be cont inued  to the e n t i r e  complex  p lane  by 

m e a n s  of i n v e r s i o n .  Consequen t ly ,  i t  has  s e c o n d - o r d e r  z e r o s  a t  the 
a b poin ts  ~ i / h  and poles  a t  the points  ~ l / r .  D i r e c t  ve r i f i c a t i on  shows that  

0 

4 Q 
= 

~- 0 ~ I 

C 

B l i b  

A" 

Fig.  4 

CO = (t 2 + h2) : ~ ( t - t ~ r  2) (2.4) 

is the d e s i r e d  funct ion.  

We note that the flow r e g i o n  in the w p lane  has  a groove D g ' F  
or  C ~ "  D as  a funct ion of h. For  s m a l l  h, this  is  the groove  D ~ ' F  

which d e c r e a s e s  with i n c r e a s i n g  h and van i shes  when h = h 2. A groove 
C ~ ' D  then a r i s e s  and as  h--* h i (r --* 1), the independent  v a r i a b l e  for 
the point  z "  tends  to the va lue  3~/2 and the flow r e g i o n  qua l i t a t ive ly  
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Fig .  5 

v a r i e s  (F ig .  4b). The  c o n f o r m a l  p r o p e r t y  of  the  m a p p i n g  is  v i o l a t e d  a t  the  po in t  ~ '  
(or  b~ and d ~ / d t  h a s  a f i r s t - o r d e r  z e r o .  When h = h 2 (no g r o o v e s ) ,  the  c o n f o r m a l  
p r o p e r t y  i s  v i o l a t e d  a t  the  poin t  D. In th i s  c a s e  dc0/dt has  a s e c o n d - o r d e r  z e r o ,  s i n c e  
c0(t) h a s  the  e x p a n s i o n  c o ( t ) - i  ~ ( t - l )  3 a t  th i s  point .  We wi l l  f ind  the  va lue  of  h2 and the  
po in t s  t ~ ,  and  t~,,. The  so lu t ion  of the equa t ion  d ~ / d t  = 0 r e d u c e s  to the  so lu t i on  of  
the  b i q u a d r a t i c  equa t ion  

t 4 - -  2 b t 2 +  1 =0 ,  

w h e r e  

The  d e s i r e d  so lu t i on  h a s  the  f o r m  

, 
- - - - r ~ - 2  . h  
r 

= V - b  - V b' - 

We p r o v e  tha t  b > 0 p r o c e e d i n g  on the  b a s i s  of  h < r  c o n s e q u e n t l y ,  f low f r o m  the  po in t  $ '  o r  ~ "  
e x i s t s  a s  a funct ion  of the  cond i t ion  b > 1 o r  b < 1. So lv ing  the equa t ion  b = 1, we f ind  tha t  h 2 i s  the  so lu t i on  
of  the  equa t ion  

r h + h ~  / 

and, consequen t ly ,  h 2 = ( , / '8-  ~f5) r  ~ 0.342. Thus  t~  is a r e a l  var iable , :  t~ = t$ , ,  and be longs  to FD when 
0 < h < h ~  ; when h ~ <  h <  h, t ~  is a complex  va r i ab le ,  t$  = t#,, =el0,  and be longs  to DC, w h e r e  0 < 
0 < ~r/2. The p r e s e n c e  of  the g roove  dr m e a n s  that  the modulus  of  ve loc i ty  r o s e  on the s egmen t  FD 
f r o m  z e r o  to s o m e  magni tude  g r e a t e r  than 1 (the point  ~ '), and then d e c r e a s e s  to the point D (of. Fi~. 4a). 
The  g roove  ~ "  i n d i c a t e s  tha t  the i ndependen t  v a r i a b l e  for  the  v e l o c i t y  i s  equa l  to - ~ r / 2  a t  D, and  does  not  
g row m o n o t o n i c a l l y  to lr /2 a t  C, bu t  f i r s t  d e c r e a s e s  in va lue  a t  ~ "  a s  a c o n s e q u e n c e  of  which  the f low 
p a r t i a l l y  t u r n s  into the  s e c o n d  s h e e t  of a R i e m a n n i a n  s u r f a c e .  

To d e t e r m i n e  the s h a p e  of  an  e j e c t i o n  c r a t e r  f r o m  E q s .  (2.2) and  (2.4),  we f ind the  d i f f e r e n t i a l  equa t ion  

dz A h  a (t --  t ~) (t -- ' t2r2) 2 
i ~ - -  r 2 ( t  + t2h~) 4 " ( 2 . 5 )  

We now d e t e r m i n e  A.  We f ind f r o m  Eq.  (2.5) t ha t  in a n e i g h b o r h o o d  of  the po in t  t = ih,  

(g --  L)--" ,~. "-fi-Ah ~ (t -~(1__ h2) (th4) *-~- h~r:) 3 x~[t " ih), 

and  f r o m  Eq,  (2.1), tha t  

w , ~ - - A  - -  
t i 

2 (l + h~) t --  ih" 

T h e r e f o r e ,  i t  fo l lows  t ha t  

A2h ~ (t ~ h~r*)* i 
W ~  ( t - - h a )  * z ~ L "  

Since  w ~ i / ( z - L )  in the  n e i g h b o r h o o d  of B,  we f ind tha t  

B 
A I 2 i . (1  - -  h 4 )  2 

h (l -! h~r z) 
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and  we f ind f r o m  Eq.  (2.5) tha t  

�9 dz 
dt 

] / 2  h (1 - -  h ' )  'z (t - -  t ~) (i - -  t:r~)~ 
r ( t  _ h 2 r  2) (1 -~  t 2 h " )  ~ " (2.6) 

I n t e g r a t i n g  t h i s  equa t ion  b e t w e e n  z = 0 and  t = 0, we ob ta in  

[ l ~ 2r 2 r 4 + 2r 2 r a ~ th 
iZ V 2 r  (1 -~ h$r 2) = i -~ ~ -~ h4 -}- -'~'J (1-1- -~h2) 3 "~ 

(t - -  h~)~ 

[ t + 2 r '  ; . r ' -4-2r  ~ r ' ]  th t [ 5  l+2r~  

. 4 _ r a + 2 r ~  r" ] th i [5  l - ~ - 2 r ' * ,  r4 -~- 2r 2 r' ] t -~- t th 
�9 h~ -b 1t ~ -  t § t2h ~- t6 h 2 ' h4 5 ~ -  In t - -  tt~'--"-h' 

w h e r e  r and  h a r e  c o n n e c t e d  by  Eq.  (2.3). When t = ih, we obtain a r e l a t i o n  be tween  the i n i t i a l  m a g n i t u d e  L 
and  the  p a r a m e t e r  h. The  g r a p h  of  t h i s  d e p e n d e n c e  i s  d e p i c t e d  in F i g .  5 for  h < h 1. When  t = e i0 (0 < 0 < 
~ /2)  we ob t a in  the  e j e c t i o n  cone  f o r m u l a .  A cone for  h = h 2 and L = L 2 ~ 0.3564 i s  d e p i c t e d  in F i g .  3a .  

2. h > h i ,  r a c o m p l e x  n u m b e r .  In t h i s  c a s e  the  e x t e r i o r  of a uni t  c i r c l e  and  a s e c t i o n  a long  the  
i m a g i n a r y  s e m i a x i s  is  the  f low r e g i o n  in the  ~ p l ane  (cf. F i g .  4b). The  funct ion  w has  a s e c o n d - o r d e r  po le  
a t  B and n o w h e r e  v a n i s h e s  in the  f low r e g i o n .  If  we con t inue  w to the  e n t i r e  c o m p l e x  p lane  a c c o r d i n g  to 
s y m m e t r y ,  we f ind  t ha t  

�9 (t -~ t2h2) 2 
(o = t ( - g ~  . (2.7) 

U s i n g  Eq.  (2.2),  we ob ta in  a d i f f e r e n t i a l  e q u a t i o n  for  d e t e r m i n i n g  the  s h a p e  of the  e j e c t i o n  cone ,  

. dz h a (t --  t 2) (t 2 --  r~) (t - -  t2r ~) 
t -g/" = - -  A -~-  (1 + t ~ )  4 " 

When t = r d z / d t  ~ ( t - r ) ,  so tha t  the  c o n f o r m a l  p r o p e r t y  i s  v i o l a t e d  a t  t h i s  po in t  an.d z - z  r ~ ( t - r )  2. The  
independen t  v a r i a b l e  v a r i e s  by  ~ a s  the  po in t  F i s  c i r c u i t e d  in the  t p lane .  Consequen t ly ,  the  i ndependen t  
v a r i a b l e  wi l l  v a r y  by  2~ in a c i r c u i t  in the  z p l ane .  U s i n g  the  p r e v i o u s l y  d e s c r i b e d  m e t h o d  we f ind  tha t  

(i  - -  h4) (t + h2) 
A - -  h ' 

and ,  u s ing  Eq.  (2.3), we ob t a in  

i-~dz = h ( i  - -  h ' )  (t • h ~) 

I n t e g r a t i o n  of  t h i s  equa t ion  y i e l d s  

(1 + t~h~) 4 (2.8) 

iz  (t - -  h~) a "th ( t -  h4)2 (5 -!- h 4) th 
= ~ (t -4- t~h2) 3 (}h~ (t -t- t2/~2) ~ + 

-{- (t  "-- h4) ( t  -'}- h2) ( 3 - -  h2 ~ h4 -}- 6 t ~,'T2h 2 t h  ~ ~(1 + h2)~ (I - -  h 4 ) ~ S h e  In  ~ . t + i t k  (2.9) 

When t = ih,  we obta in  the  r e l a t i o n  be tween  L and the  p a r a m e t e r  h: 

L = T -~ 4 - -  8 i -  h2, 
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whose graph is depicted in Fig. 5 for h > h 1. Substituting t = i, we ob- 
tain an equation for calculating the width of the ejection cone, 

~.+h 1 (i q- ~,~p 4 h2 q- (1 -- ,~-"p ('l + t,, 2) In x 0=  ~ l - -  h4-- 2h i--hi" 

When h = hi, Eq. (2.6) coincides with Eq. (2.8), the indepen- 
dent variable of the complex velocity var ies  i r reguiar ly  f rom ~r/2 to 
37r/2 at the point D (cf. 4a and b) and the ejection cone has the form 
given in Fig. 6 (curve 1). Evidently, par t  of the flow region is on the 
second sheet of a Riemannian surface.  A further  increase  in h leads 
to the point F (t = r) in the oJ plane (cf. Fig. 4b) moving along a c i rc le  
and the independent variable of the complex velocity continuously 
varying f rom 3v/2 to Ir/2 at this point. The velocity direct ion var ies  
f rom -31r/2 to -~r/2, par t  of the flow region on the second sheet  of a 
Riemannian surface decreases ,  and, beginning with h = ha, the entire 
flow fits on a single sheet (cf. Fig. 6, curve 2). 

As h -* 1 dipole interaction dec reases  and a cone corresponding 
to a single dipole is obtained within the r ight  half-plane (cf. Fig. 6, 

curve 3). The variable h 3 is determined f rom the condition that the point at  which velocity is directed v e r -  
t ically downward is on the imaginary axis, i.e.,  h 3 is a solution of the sys tem of equations 

' { Rec0=0, 
X ~ 0 ~  

where oJ a n d x  a re  determined by Eqs.  (2.7) and (2.9) when t = e i0, a rg ( r )  < 0 < lr/2 (arc FC). Numer ica l  
solution of the sys tem yields h a ~ 0.4933. 

Let us turn to Fig. 5. It follows f rom the solution of the problem that there  exists a s ingle-sheeted 
solution h ~- h 2 and h ~- ha, and that the solution is two-sheeted when h 2 < h < h a. When L 1 -~ L ' ~  L 2 (L 1 
0 . 2 4 3 ,  L 2 ~ 0.3564) three values of the pa ramete r  cor respond  to the initial L, i.e., the problem has three 
solutions within this interval.  Consequently, a one-sheeted solution may be cor re la ted  to every  value of L. 
There  exists  two one-sheeted solutions when L 3 -< L -< L 2 (L 3 ~ 0.3516). 

It should be noted that it is possible to const ruct  one more  solution when 0 ~ h - h 3 that is everywhere  
one-sheeted but possesses  a dead zone [5].* For  this purpose it is neces sa ry  that the imaginary axis be a 
solid wall. When h = h3, the cone touches this wall and a subsequent decrease  in h leads to the formulation 
of a rec t i l inear  ver t ical  segment  of the cone boundary on which flow ra te  f i rs t  increases  to some (deter-  
mined in the course  of solving the problem) V1 and then again dec reases  to one. The flow region in the w 
plane remains  invariant. A groove in the positive direct ion of the imaginary axis up to Vl (Vl > 1) appears  
in the w plane when h < h 3. A dead zone that vanishes as h --~ 0 is formed in the physical plane within the 
flow region. 

The a reas  of ejection cones were calculated using the solution as a function of the distance between 
the charges  (S O is the cone a rea  at L = 0) (Fig. 7). Only one-sheeted so lu t ionswerecons idered .  It is evident 
f rom the graph that interaction of the charges  in this case as  well does not increase  the cone area.  Maxi- 
mal 6fficiency of charges  is obtained when they do not interact  and are  set off together.  
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